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Abstract-In this paper an anisotropic strain-gradient dependent theory of elasticity is exploited,
which contains both volumetric and surface energy gradient dependent terms. The theory is applied
to the solution of the mode-III crack problem and is extending previous results by Aifantis and co­
workers. The two boundary value problems corresponding to the "unclamped" and "clamped"
crack tips, respectively, are solved analytically. It turns out that the first problem is physically
questionable for some values of the surface energy parameter, whereas the second boundary value
problem is leading to a cusping crack, which is consistent with Barenblatt's theory without the
incorporation of artificial assumptions. Copyright © 1996 Elsevier Science Ltd

I. INTRODUCTION

Standard continuum-mechanics theories cannot describe situations dominated by micro­
structural effects, e.g. load or geometrically induced stress singularities, since the influence
of these effects is not properly accounted by the standard continuum models. Generalized
continuum theories, on the other hand, such as higher-order gradient theories or couple­
stress theories can often describe adequately the effect of microstructure on the macroscale
through the solution of properly formulated boundary value problems. It should be noticed
that for the corresponding generalized continuum theories with a variety of names and
microstructures ofvarious degrees ofrigor and complexity have been invented; e.g. Cosserat
continua or micropolar media, oriented media, continuum theories with directors, multi­
polar continua, multistructured or micromorphic continua, non-local media and others (cf.
Hermann, 1972). The state-of-the-art of this evolution in the mid 1960s was reflected in the
collection of papers presented at the historical IUTAM Symposium on the "Mechanics of
Generalized Continua", in Freudenstadt and Stuttgart in 1967 (Kroner, 1967). Newly, the
interest to such theories is rekindled through the idea of connecting micromechanics with
fracture and failure of solids (see for example, Muhlhaus and Vardoulakis, 1987, and for
extensive literature review in Vardoulakis and Sulem, 1995, chapters 8 and 9).

The isotropic, higher-gradient, linear elasticity theory was developed essentially by
Mindlin (1964; 1965a). Mindlin's (1965a) theory has been recently explored as far as its
mathematical potential is concerned in a comprehensive paper by Wu (1992). In this paper
Wu states (p. 101), that" ... since it is not possible to include a term linear in [the strain
gradient] Eijk in [the strain energy density] W, it is not possible to introduce a material
constant to induce a self-equilibrating state for defining, say, surface free energy ... ". This
is clear if one considers that the strain gradient is a third order tensor, and, in order to
include its effect in the strain energy density function, one needs a director whose existence
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is excluded from the isotropy assumption. However, if one restricts the effect of gradient
of strain to its trace (i.e. to the gradient of the strain dilatation), one arrives to Mindlin's
(1965a) surface strain energy density term that accounts for the Laplacian of the dilatation.
It should be pointed out, however, that in some boundary-value problems, like the anti­
plane shear problem, such a constitutive theory, due to the absence of dilatation, degener­
ates, and the effect of the dilatation-gradient term vanishes.

The present paper can be seen more as a further investigation of the questions posed
earlier by Aifantis and co-workers (1992a; 1992b; 1993; 1994). There the potential of
applying gradient elasticity theory to linear elastic fracture mechanics is explored on the
basis of its applicability into describing the stress and displacement fields in the vicinity of
Griffith cracks. For simplicity reasons Aifantis and co-workers have studied only the effect
of the volume strain-gradient energy term, and, as he states, his theory may be viewed as
a particular case of Mindlin's (1965a) original theory, involving only one material constant.
The present paper deviates from this path suggesting a constitutive model that accounts
for surface strain-gradient energy terms which persist in anti-plane shear. The background
for this constitutive model is sketched briefly below.

At practically the same time as publication of the pioneering papers by Mindlin (1964 ;
1965a) and Mindlin and Eshel (1968), Professor Germain has encouraged the com­
munication to the French Academy of Sciences of the ideas of Casal (1961; 1963; 1972),
which in turn seem to have inspired Germain's (1973a; 1973b) fundamental papers on the
continuum mechanics structure of the grade-2 or higher grade theories. In our paper, we
want to give full credit to Casal's original idea, who was first to see the connection between
surface tension effects and the anisotropic gradient elasticity theory. For this reason we
rework here Casal's original idea on the ID tension bar problem and provide the simplest
possible generalization of the corresponding constitutive theory that accounts for only two
material constants having the dimension of length: one, say t, responsible for volumetric
strain-gradient terms, and another, t', responsible for surface strain-gradient terms. Of
course such ideas are amenable to generalizations of various degrees of complexity.
However, one should keep in mind that already the determination of the two material
lengths t and t' constitutes a formidable experimental challenge, and as we will show here
this might be possible only through precise monitoring of the crack profile.

Here we derive for two specific boundary value problems of mode-III crack defor­
mation (or tearing mode) exact solutions in integral form. These are: (a) the problem where
no restriction on the displacements at the crack tip is posed (traction boundary value
problem), and (b) the problem where the tips of the crack are clamped (mixed boundary
value problem). The results are compared with those of Altan and Aifantis (1992b) and
Ru and Aifantis (1993). In both problems the stress at the crack tip exhibits the inverse
square root singularity as in the classical Linear Elastic Fracture Mechanics (LEFM)
theory, however, the strain field remains finite everywhere.

It turns out that if the surface energy parameter is included in the analysis of the first
problem and for sufficiently large values of this parameter, the crack faces interpenetrate
each other. This means that the specific boundary value problem is improperly posed at
least for these values of the surface energy parameters which give considerable values of
negative anti-plane shear displacement as compared to the length of the crack. The solution
of the second problem yields a crack shape forming cusps of the first kind at the crack tip,
which is consistent with Barenblatt's (1962) "cohesive-zone" theory, but without requiring
an extra assumption on the existence and effect of interatomic forces beyond those implied
by the gradient elasticity. It was also found that the incorporation of volumetric strain
gradient energy terms leads in general into a crack stiffening effect. In this paper we will
show that surface strain gradient terms may have the opposite effect which in general is a
welcome property of a mathematical model as far as description of experimental data is
concerned.

2. ANISOTROPIC GRADIENT ELASTICITY THEORY WITH SURFACE ENERGY

An early formulation of a simple linear continuum theory with microstructure can be
found in a rather unnoticed publication by Casal (1961), quoted in the papers by Germain
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(1973a; 1973b). It is noted that Casal's model cannot be directly embedded in Mindlin's
(1964) linear, isotropic elasticity theory with microstructure, because the former is an
anisotropic elasticity model. In Appendix A Casal's model is demonstrated in the ID case
of a tension bar. The 3D generalization of Casal's gradient dependent anisotropic elasticity
with surface energy is straightforward leading to the following expression for the strain
energy density function

(1)

where ak == a/axb A and G are Lame's constants, t, t' are characteristic lengths of the
material defined previously,

(2)

are the strains, Ui the displacements, and

(3)

is a director. Accordingly, eqn (1) defines a gradient anisotropic elasticity with constant
characteristic directors t k . The last term in eqn (1) has the meaning of surface-energy since

(4)

and nr is the outward unit normal to the boundary. Here, the particular case is considered
where Vr == n" which physically corresponds to surface-parallel micro-cracks.

In this case, from eqn (1) we obtain the following constitutive relations for the stresses
and double stresses

(Jij = Abii~kk +2G(Eij - t
2V2

E,) )

Tij = AbijEkk+2GEij+2GtkajEij

Ilkij = 2GtkEij +2Gt2 akEij

(5)

where bij is Kronecker delta. These stresses obey the following equilibrium conditions in
the volume V in the case of absence of body forces (Mindlin, 1964)

(6)

as well as, the following set of static boundary conditions on the surface S

(7)

(8)

where Pb Rk are the specified tractions and double tractions, respectively, on the surface S,
and

(9)
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3. THE ANTI-PLANE SHEAR CRACK PROBLEM

For the half-plane y ~ 0 problem of pure shear or mode-III crack deformation (Fig.
1), we have

(10)

Thus, the only non-vanishing component of displacement is Uz which is a function of x and
y. In view of the earlier derived constitutive equations of gradient elasticity with surface
energy we have

(lxz = 2G(exz-t'2V2Bxz)

(lyz = 2G(Byz - t'2 V2 Byz)

(a)

(b)

y
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y

x

z

z

x

Fig. I. (a) Crack geometry and stress notation; (b) double stress.
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2 a
/lxxz = 2Gt AX exz

2 a
/lxyz = 2Gt AX eyz

/lyxz = 2G(t'exz +t 2 :yexz )

/lyyz = 2G(t'eyz +t2
:/yz).

where G is the shear modulus and the strains are defined, as usual, by the relations
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(11)

(12)

All other components of the strain and stress tensors vanish and the only non-trivial
equilibrium equation becomes

Gaxz Gayz-+-=0ax oy . (13)

Substituting the expressions for the stress components as they are given by eqn (11)
into eqn (13), we obtain

(14)

The above equation can be further simplified to yield

with

Uz(x,y) = -uz(x,-y),

(15)

(16)

i.e. the only surviving displacement component is an odd function of y. Relationship (15)
is essentially a singular perturbation of the classical theory and it is obvious that as t -.. 0
it is reduced to the classical LEFM harmonic equation.

It can be shown that the general solution of the above fourth order partial differential
equation admits the representation (Mindlin, 1965b)

uz(x,y) = u~(x,y)+u~(x,y) (17)

where u~, u~ are real functions which are the solutions of the harmonic and Helmholtz's
equations, respectively.

If the traction specified on the crack surface is an even function ofx then Uz is symmetric
with respect to x, i.e. uz(x,y) = uz( -x,y). This justifies the application of the Fourier cosine
transform to the harmonic equation

(18)

and considering that the displacements must vanish at infinity it is found that
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(19)

Similarly, by applying the Fourier cosine transform to Helmholtz's equation

and solving the resultant ordinary differential equation of second order it is obtained

(2 roo -y rr;I
u;(x'Y)='l~Jo B(¢)e -J'Tr;cosx¢d¢ y;::O.

(20)

(21)

Combining eqns (17), (19) and (21) the following result is derived (also derived by Altan
and Aifantis, 1992b)

where A(¢), B(¢) are unknown functions to be determined from the boundary conditions
of the problem. Accordingly, the expressions for the only surviving stresses aw ayz and the
double stresses J1.xxZ> J1.xyz> J1.yw J1.yyz can be obtained from eqns (11), (12) and (22) as follows

axz(x,y) = -GALoo ¢A(¢)e-y~sinx¢d¢

ayz(x,y) = -GALXl ¢A(¢)e-y~cosx¢d¢

(2 roo { - r:;;I}J1.xxz(x,y) = -Gt\j;Jo C A(¢)e-y~+B(¢)e Y-J~ Tr; cosx¢d¢

J1.yxz(x,y) = -GALoo {[t"~-t2¢2]A(¢)e-y~

+ [t"¢-t2¢J¢2 + ;2 ]B(¢) e-yJe+~}sinx¢d¢

J1.yyz(x,y) = -GALoo {[t"¢-t2¢2]A(¢)e-y~

+[t"J~2+ ;2 -(1+t2C)]B(~)e-yJe+~}COSX¢d¢ y;::O. (23)

Problem I : undamped crack lips
Altan and Aifantis (1992b) employed a special isotropic gradient elasticity theory and

demonstrated that if the load is prescribed along the surface of the physical crack (traction
boundary value problem), then the displacement boundary condition (mixed boundary
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value problem), usually imposed outside the crack, is a consequence rather than a require­
ment. In the same spirit, we now state the problem in the present gradient elasticity theory
of a finite straight crack in a field of constant anti-plane shear stress applied on its surface
and vanishing at infinity. Let S be the complement of the line segment -r.x < x < r.x, y = °
extended on the half-plane y ~ °with 2r.x denoting the length of the crack. We see the
solution in S of the field eqns (23) subject to the inhomogeneous boundary conditions

CTyz(X, 0) = -CTo °~ x < r.x }

flyyz(X, 0) = ° °~ x < 00 '
(24)

where CTo is the intensity of the applied loading [FL -2], and to the homogeneous regularity
conditions at infinity

CT.H , CTyz - 0, flxxZ> flxyz> flyxz, flyyz - 0, Uz - ° as J x 2 +y2 - 00. (25)

The first of conditions (24) and the first and third of (25) are the classical ones, while the
second one of conditions (24) is an extra boundary condition required as a result of the
gradient terms.

The above boundary conditions take the following form in view of the last two
equations of (23)

o~X<r.x }

o~x<oo .

(26)

The second of relations (26) yields

(27)

Thus, if the unknown function A(';) can be determined from the first of the integral
equations (26), the problem is fully solved. This is done here by means of a semi-inverse
method which is guided by the classical LEFM solution. Accordingly, the following rep­
resentation u~(x, 0) is assumed, which as seen below is justified by a direct a posteriori
verification

U~(X,o) = AL"" A(';) cos x'; d'; = C1Jr.x
2
_X

2 °~ x < IX (28)

where C1 is a constant to be found from the boundary conditions. Applying the Fourier
cosine inversion formula to eqn (28), we have

(29)

where I n is the usual Bessel function of the first kind and of order n.
Introducing the above expression in the first boundary condition (26), it is found that
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(30)

and according to the well-known identity

we have

Finally, combination of eqns (29) and (32) yields

(31)

(32)

(33)

It can be easily seen that the above expression for A(~) satisfies the first of boundary
conditions (26), and the regularity conditions (25), which is consistent with the assumption
in (28). Therefore, in accordance to (27) and (33), the final expression for the mode-III
displacement, stresses and strains take the form

(falX fOO 1 tZ~Z -t'~ - ~luz(x,y) = G ~~ 1J1(IX~) e-ye - t' e Y-J' T{z cosx~ d~

a 1+tZe - -Jl +tZ~Z
t

(fxAx,y) = -(falX100

Jl(IX~)e-yesinx~d~

(fyAx,y) = -(falX100

Jl(IX~)e-yecosx~d~
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y~O. (34)

The above solutions indicates that the stresses are singular at the crack tip as in the classical
LEFM theory, however, the strain field is finite everywhere in contrast to the classical
theory which predicts infinite strain at the crack tip. Next, taking into account the third of
the above equations, we apply the well-known Irwin's condition at the crack tip to obtain
the stress intensity factor (SIF).

which agrees with the well-known LEFM result.
It can be shown that the faces of the crack do not completely close at its "physical

tip", Le. at x = a, but they extend beyond it (strictly speaking at infinity) to close smoothly
for sufficiently low t'/t-ratio as will be discussed in a next paragraph. As mentioned earlier
in Altan and Aifantis (1992b) this feature of the above solution indicates that gradient
elasticity substantiates Barenblatt's (1962) "cohesive zone" theory without explicitly post­
ulating the elimination of the stress singularity at the crack tip.

Problem II : clamped crack tips
In this special half-plane y ~ 0 problem, the crack occupying the line segment

-a < x < a, y = 0 will be subjected to the following mixed boundary conditions (derived
from the virtual work principle)

O"yz(x,O) = -0"0

,uyyz(x,O) = 0

uz(x,O) = 0

Kyyz(X,O) = 0

o::::;x<a)

a<x<<Xl

(36)

and the same regularity conditions at infinity as in problem I of the previous paragraph.
Substitution of eqns (11) into (36), renders

u = 0 )
a:uz = 0 a < x < <Xl

ay2

where here and henceforth uz(x, 0) is denoted as Uz.

O::::;x<a

(37)
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In fact, the last of conditions (37) is automatically satisfied considering that Uz is anti­
symmetric with respect to y and Uz is zero outside the crack region. Furthermore, substituting
(22) for Uz in the above equations we are led to the following system of dual integral
equations for B(e), since A(~) was obtained previously as the solution of the first of
equations (37).

lOO[(l+t2~2)- ~ Jl+t2~2JBmcosx~de = t/J~rx

x100

~-l (t' ~-t2e)JI (rx~) cosx~d~ 0:::; x < rx (38)

The objective now is to transform the dual integral equations (38) into a regular integral
equation of a standard form. This is accomplished by taking the following Riemann­
Liouville fractional integral representation (Erdelyi, 1954) for u~(x, 0)

where cp is a sectionally continuous function which may exhibit weak singularities in [0, ct]

and it is allowed to depend on t, t' and rx.
Applying the Fourier cosine inversion formula to the above equation, the following

result is derived

B(~) = Af: cosx~ dx I: cp(t)Jt2_x2dt 0 < ~ < 00. (40)

By using the extended Dirichlet's formula for reversing the order of integration of functions
exhibiting weak singularities inside the closed domain of integration (Whittaker and
Watson, 1948) and by using the well-known identity (Gradshteyn and Ryzhik, 1980)

(41)

the following result is obtained

(42)

In summary, u~(x, 0) must vanish for x> ct and satisfy eqn (40) for 0:::; x < rx. The function
BG) is then given by eqn (42). Finally, on noting that
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r) ~-lJl(C(OCosx~d~ = 0

f((p(t) dt I'" ~-l J t (t~) cos x~ d~ = 0

X>IX}

x~t

4541

(43)

it is concluded that the condition of zero displacement ahead of the crack tip [second of
relations (38)] is satisfied identically.

Next, the expression for B(~) given in eqn (42) is introduced in the first of equations
(38), x is replaced by x' and an integration with respect to x' over the range 0 ~ x' ~ x
(0 ~ x < IX) is performed to yield

The above equation is a linear Fredholm integral equation of the first kind

fKo(x, t)t<p(t) dt = F(x) 0 ~ x < IX

where

is the kernel, and

(44)

(45)

(46)

(47)

is the free term. Fredholm integral equations of the first kind are, in general, difficult to
solve due to their ill·posedness from a conventional standpoint, and furthermore it is not
guaranteed that they have a unique solution (Tricomi, 1957). However, it is possible to
reduce the solution of (45) to that of a more tractable Fredholm integral equation of the
second kind with a simpler kernel.

First, observe that

(48)

where

(49)

and



4542

with

I. Vardoulakis et al.

(50)

(51)

Taking into consideration the value of the discontinuous integral

x I
K](t,x) =- ~ t>x,

t V t2 _x2

eqn (44) becomes

(52)

i"ep(t) f" fooX ~dt+ tep(t) dt P(t~)Jl(t~) sinx~d~ = F(x) O::s;; x < IX (53)
x v t -x 0 0

which has the form of the familiar Abel integral equation

i" ep(t)
~dt=f(x) O::S;;X<IX

x V t
2 -x2

where

{
F(X) f" f'"' }f(x) = ~ - Jo rep(r) dr Jo ~y(x~)f1(t~)Jl (r~) d~ 0 ::s;; x < IX

and

sin ~
y(~) = -~-.

The integral equation (54) has the solution (Sneddon, 1966)

2 d f" xf(x) dx
ep(t) = - - -d ~ O::s;; t ::s;; oc.

n t t V x 2
- t2

Sincef(x) is differentiable, integration by parts and subsequent differentiation, yields

2tf" I dep(t) = - - ~ -d [f(x)] dx o::s;; t ::s;; oc.
n t V x 2 _t2 X

Taking into account the well-known identities (Gradshteyn and Ryzhik, 1980)

(54)

(55)

(56)

(57)

(58)
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(59)

(60)

Moreover, the value of the Riemann-Liouville operation (58) on the function F(x) can be
found by virtue of the relation

(61)

where b(x) is the usual Dirac delta function, and by also utilizing the value given by Gubler
for the infinite Weber-Schafheitlin integral (Watson, 1958)

(62)

with 2Fl(a,b;c;z) to be the hypergeometric function. Since in our case c-a-b = 0, the
series representation of the hypergeometric function

a·b a(a+l)b(b+l) 2

2Fl(a,b;c;z) = l+-lZ+ ( 1) 1 2 Z + ...c· c c+ ..
(63)

converges absolutely throughout [0,1), while an examination of (62) reveals that in the
limit as z --+ 1 we have

(64)

Equation (58) is equivalent to an inhomogeneous linear Fredholm integral equation of the
second kind with a weakly singular kernel which belongs to the Lebesgue class L 2 in the
square [0, ti] X [0, ti] and a free term which belongs to L1-class in [0, ti] (Appendix II),

°~ t ~ ti. (65)

In general, both existence and uniqueness of solution of eqn (65) are assured by Fredholm
theory provided that t- 2 is not an eigenvalue of the homogeneous equation associated with
(65) [Tricomi 1957]. Solution of the above Fredholm integral equation by employing
Liouville-Neumann method of successive approximations (Whittaker and Watson, 1948)
will not give, in general, a complete picture due to convergence problems (Appendix B).
However, according to Fredholm's first theorem, the above inhomogeneous equation has
the following unique solution which is unbounded at t = ti but belongs to LI-class in [0, ti],



4544

where

I. Vardoulakis et al.

cp(t) = get) + Ie f: ret, r; Ie)g(r) dr 0 ~ t ~ (X

1(To t' t (3 1 t
2

) (To (XI/2
g(t)=---- F - -'2'- ---b((X-t) O:O<::t:O<::(X

2 G t 2 (X 2 1 2' 2' '(X2 G t1/2 "" ""

(66)

(67)

and r(t, r ; Ie) is the resolvent kernel of the Fredholm integral equation (65) given as the
quotient of two power series in Ie (Tricomi, 1957)

with

00 (-leYL -,-Cp(t,r)
p=o p.

ret, r; Ie) = -----­
00 (-le)P
L--,-Cp

p=o p.

Co = 1, cp = f: Cp_1(s,s)ds, Cp(t,r) = cpK(t,r)-p f: K(t,x)Cp_ 1(x,r) dx,

(68)

(69)

Both series in (68) converge for all values of Ie and according to the generalized Liouville
theorem the resolvent exists for all Ie. By means of the shifting (or sampling) property of
the delta function

and relationship (67), relationship (66) takes the following form

(70)

By using again the shifting property of the delta function, and recalling equations (17) and
(40), it can be easily found that the leading term of the above representation of the function
cp cancels out the displacements predicted by the classical theory. Thus, the shape of the
crack is no longer elliptical as predicted by LEFM, but given by the formula

where we have set

uz(x, 0) = J: cp*(t)Jt2 -x2 dt (71)
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(72)

with q>*(t) being a L2-function in [0, IX].
After integration by parts of expression (71) and by an asymptotic analysis of the

solution close to the crack tip, we obtain (Appendix C)

(73)

where r = IX-X. In Eqn (73) 11 is a small length with respect to the semi-crack length IX, in
order to remove the weak logarithmic singularity of q>* at t = IX. The following upper bound
has been found which gives the desired accuracy as a function of 11 (Appendix C)

\<;(11) I = Ir-~ q>*(t)Jt
2

- x
2

dtl ~ N(11*); 11* = ~ ~

with

0'0 ("
N(11*) = - -IX2 1-0.1511*+11*log11*I--+ 0 as 11* --+ O.

G ('2
(74)

For example, if we take 11* = 1.6£-3, the accuracy is 0.0105(0'0("IX2)j(Gt2
). According to

eqn (73), the crack shape predicted by gradient elasticity with surface energy is described
by the equation

(
X)2 (Uz)2/3- + - = 1
IX {J

(75)

where (J = uz(O, 0). That is, the crack lips form a cusp of the first kind with zero enclosed
angle and zero first derivative of the displacement at the crack tip (Fig. 2). It is noted that
LEFM predicts infinite strain at the crack tip. This fact indicates that gradient elasticity
theory with or without the surface energy term predicts the same crack shape with Bar­
enblatt's (1962) "cohesive-zone" theory without requiring an extra assumption on the
existence of interatomic forces at the outset beyond those implied by the gradient terms in
the generalized constitutive equation.

The strain energy release rate (or, alternatively the crack driving force) of the mode­
III crack can be computed if on the extension of the crack we introduce an imaginary cut
whose faces are acted upon by the stresses produced in the intact medium near the crack
tip by the load exerted on the original crack surfaces. The required energy release rate GIll
is computed by considering the virtual work done by stress O'yz and the double stress Ilyyz

on the displacement u" and the displacement gradient auF)y, respectively, for a virtual
infinitesimal advancement of the crack tip by a distance b, i.e.

(76)

In polar coordinates (r,8) from the crack tip, and by virtue of eqns (35) and (73), the
quantities appearing in the above integrand have the following asymptotic expansions
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Fig. 2. Crack with tips in the form of cusps of first kind (a = 1, fJ = 1/2).

1 KIll () 1'2
(Jyz(r, () = .,;;. ~cos"2+o(r I)

k r 3/
2 3{)

Uz (r, () = - T sin2 +0(r5/2)

3t2 k () 3t'
Ilyyz(r, () = - 4 ); sin "2 - 2 k 3~

X cos ~ +0(r3/2)
2

OUz 3 k 3 r.. () 32
-(r () = - - -v rcos- +o(r / )oy , 2 G 2

(77)

where

2 0.G 12
k 3 = -'1'-3-£.a / q>*(a-I1)· . (78)

Upon using eqn (77), the integration of eqn (76) can be carried out explicitly to yield

(79)

where GIII = (n/2) ((J6a/G ) is the LEFM solution. Thus, in gradient elasticity with surface
energy theory there is no contribution to the work rate from the "holding force" on the
crack extension, as is also predicted by Barenblatt's (1962) "cohesive zone" theory. In
Griffith's theory, on the other hand, the work rate comes entirely from the "holding force"
on the extension, and this is possible only because there is a suitable stress singularity and
displacement square root radius dependence, and the limitations of the linear theory to
small strain are not considered. Alternatively, the energy release rate in gradient elasticity
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with surface energy can be found from the relation which gives the strain energy W required
to form a pressurized crack, i.e.

W= 150 f: uz(x,O)dx = 150 f: dxf qJ*(t)Jt
2
-x

2
dt = 150 f: qJ*(t)dt1Jt

2
-x

2
dx,

or

(80)

with (P(t) = qJ*(t)/«(jo/G). The energy release rate is then given by

(81)

Finally, the asymptotic expansions of the strain components in the crack tip region give

__ ~ k 3 r:.. ~ 3/2}6xz(r,8)- 4 Gyrsm2+o(r) .

__ ~ k 3 r:. ~ 3/2
6yz (r, 8) - 4 G Y r cos 2 +o(r )

(82)

The above results demonstrate that the strain field remains finite at the crack tip region in
contrast to LEFM and therefore they may allow for the development of more realistic
crack initiation theories based on "maximum strain" criteria.

4. NUMERICAL RESULTS AND DISCUSSION

First, we introduce the dimensionless variables m and m' defined as

m = t Irx, m' = t'/rx

and the normalized crack displacement

o Uz

Uz = «(jo/G) .

(83)

(84)

(a) Problem I: undamped crack tips
Since the integrals appearing in expressions (34) for the displacement and strain tensor

components cannot be evaluated explicitly we calculate them numerically. In order to deal
with the strongly oscillatory character of the integrands especially for large values of x,
Filon's method was employed (Davis and Rabinowitz, 1984). Furthermore, it was found
that all integral expressions display good convergence characteristics, and, thus, the range
of integration becomes finite.
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Fig. 3. LEFM elliptic crack shape (m = 0). Effect of the material length ratio m'lm on the normalized
displacement along the pressurized crack with undamped tips for m = 0.2.

In Fig. 3 the distributions of the normalized crack displacement, referring to the upper
right part of a crack, for m = 0.2 and for various values of the relative surface energy
parameter m', are shown. The crack displacement distribution predicted by LEFM is also
superimposed in the same figure. It is clear that for m > 0 the cracks do not completely
close at the tip (xla = 1) of the physical region, that is the region where the traction is
specified [0, a]. As is also apparent from Fig. 3 the crack displacements in the physical crack
region increase monotomically from the value of m' = 0 on, i.e. as the ratio m'lm increases.
It is worth noting that for low m'lm-values the cracks close smoothly to form a cusp,
whereas for sufficiently large m'lm-values the crack surfaces exhibit negative anti-plane
shear displacement at the process zone suggesting that, at least for these values of m', the
specific boundary value problem is physically not meaningful.

(b) Problem II: clamped crack tips
As far as the second mixed boundary value problem is concerned, the multiple integrals

appearing in the expressions (69) were evaluated by a Gauss-Legendre numerical quad­
rature scheme. In order to demonstrate the nice convergence behavior of the normalized
displacement at the mid-point of the crack u~(O, 0) given by the relationships (71) and (84)
for various values of p, which refers to the number of terms in the truncated series (68),
and of the relative volume energy parameter m, Table 1 is constructed. Accordingly, Fig. 4
shows the convergence of the solution for the semi-crack profile in the upper half-plane for

Table 1. Effect of the relative volume energy parameter m on the convergency characteristics of the solution of
the Fredholm integral equation for m' = 0

m

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 16.666670 4.166667 1.851852 1.041667 0.666667 0.462963 0.340136
I 5.376926 1.636208 0.892593 0.594207 0.431840 0.329296 0.259184
2 2.690611 1.023052 0.677680 0.508172 0.394461 0.311874 0.250528
3 1.663240 0.828621 0.630101 0.495324 0.390596 0.310577 0.250046
4 1.198415 0.774852 0.623048 0.494213 0.390381 0.310527 0.250033
5 0.989153 0.764663 0.622437 0.494159
6 0.925941 0.763574 0.622408
7 0.924511 0.763268
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X/a
Fig. 4. Convergency ofthe solution giving the normalized displacement along the crack with clamped

tips for various values of p (m = 0.5, m' = 0).

m = 0.5 and m'lm = O. It can be seen that the faces of the crack tend smoothly to the x­
axis to form a cusp of zero contained angle, as it was also shown above by the asymptotic
analysis. In Fig. 5 the results which refer to the dependence of the normalized displacement
at the mid-point of the crack upon the relative volume energy parameter m together with
those predicted by Ru and Aifantis (1993), are presented. From this figure it is noted that
the solution of the Fredholm equation definitely tends to uz(O, O)lu~(O, 0) = 1 for m -+ 0,
while the respective solution of the ordinary differential equation (o.d.e.) given by Ru and
Aifantis (1993) tends to the classical crack displacement solution for m = 0.23.

In Fig. 6 it is shown that the semi-crack profile predicted by the Fredholm integral
equation approaches the LEFM solution in a global sense as m --+ 0; however, it is char­
acterized always by a cusp at the tip region. In contrast, the solution of the o.d.e. always
gives a finite and non-zero value of the displacement gradient at the crack tip (Ru and
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Fig. 5. Comparison of the present solution with that given by Ru and Aifantis (1993) for the

clamped crack with m' = O.
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Fig. 6. LEFM elliptic crack shape (m = 0). Present theory predictions concerning the effect of the
relative volume energy term on the displacement of the cusping crack with clamped tips (m' = 0).

Aifantis, 1993). As is apparent from Figs 5 and 6, the crack displacement diminishes
monotonically, or alternatively the crack becomes "stiffer", in comparison to the classical
theory, as m increases.

Furthermore, keeping the value of the relative volume energy parameter m constant,
the crack stiffening effect becomes more pronounced as the relative surface energy parameter
m' increases in the domain [0, m) as is evident from Fig. 7. We should remark that from
energy considerations the parameter m' can assume negative values (Appendix A). The
effect of a negative m' is shown here in Fig. 7 leading to a more "compliant" crack. This in
general is a welcome property of the mathematical model as far as a description of exper­
imental data is concerned.

The crack stiffening effect due to the increase of the dimensionless value m'lm for
various values of the relative volume energy parameter m is displayed in Fig. 8. As it is also
shown in the same figure, u~ -+°as m'lm -+ 1.
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Fig. 7. Effect of the material length ratio m'lm on the clamped crack shape for m = 0.5.
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Fig. 8. Effect of the material length ratio m'lm on the mid-point normalized displacement of the
clamped-tips crack for various values of m.

As expected, this crack stiffening due to the characteristic material lengths t and
t' (> 0) of the structured medium is responsible for lower energy release rates during
crack propagation. This is clearly demonstrated in Fig. 9 where it can be seen that as
m'lm increases for a given volume energy parameter, the crack driving force decreases
appreciably.

In view of Griffith's rupture criterion G ~ 2y, where 2y[FL -1] is a material property,
the so-called "specific fracture energy", the above results suggest that a higher external
load as compared to that of the classical case must be exerted on the crack or on the remote
boundaries, in order to propagate it in a material with microstructure. This prediction is
consistent with the experimental result that the specific fracture energy 2y of rock or rock­
like materials, e.g. marble and ceramics, is much greater than the weighted average of the
fracture energies of their constituent minerals (Friedman et al., 1972; Atkinson, 1984; and
others). For example, in glass and minerals 2y ~ 1-10 J/m2

, while in rocks 2y can be two­
three orders of magnitude greater. According to the present theory this apparent increase
of fracture energy is due to the appreciable decrease of GIll in a structured medium with
GIll ~ 0 as m'lm ~ 1.

0.L1r------,~-----,---___r---__r_---_,

03

r5J 0.2

0.1

Ol~-----.. ....------.."-r-----..'-r-----..'-~----l,

m'/m

Fig. 9. Effect of the material length ratio m'lm on the dimensionless energy release rate of the
pressurized clamped-tips crack for various values of m.
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From the above it is clear that the determination of the two characteristic material
lengths, t, t', constitutes a formidable experimental challenge, at least for the specific case
examined here, that is the anti-plane shear case, through precise monitoring of the crack
profile in torsion experiments of pre-notched cylindrical bars of rocks with known
granulometry.
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APPENDIX A

For demonstration purposes we consider first the ID example of a tension bar of length L in a clamped end­
free end configuration with the load acting on its free end along the x-axis. In the uniaxial case the strain energy
of the tension bar is defined as follows

where

I rL 1
W ="2 Jo E(e2+t2VeVe) dx+ "2[Et'e21~ (A.I)
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(A.2)

denotes the strain gradient. Casal's elastic strain energy ansatz (A.I) consists of two terms: (a) a "volume energy"
term which includes the contribution of the strain gradient, and (b) a "surface energy" term. Accordingly, t and
t' are material lengths related to volume and surface elastic strain energy, respectively.

Casal's expression (A. I) for the global elastic strain energy of the tension bar is recovered by introducing an
appropriate anisotropic, linear elastic, restricted Mindlin continuum (Mindlin, 1964). Since in a restricted con­
tinuum the relative deformation vanishes, the variation of the strain energy density becomes

ow = TOe +JloVe. (A.3)

In this expression T (Cauchy term) works on the strain, whereas Jl (double stress) works on the strain gradient
(Mindlin, 1964). In connection to the variation (A.3), Casal's model is equivalent with the following constitutive
assumptions for the Cauchy- and double-stress

ow ,
T = - = E(e+t Ve)

ae

aw
Jl = aVe = E(t'e+t

2
Ve).

From eqns (A.3)-(A.5) the elastic strain density is derived, resulting in the following expression

w = ~E{e2 +t2 VeVe} +~Et'Ve2.

(A.4)

(A.5)

(A.6)

It turns out that for positive strain energy density (w > 0) in the considered 1D case, the material lengths are
restricted, such that

(A.7)

This means that if surface energy terms are included, then volume strain-gradient terms must also be included. It
is worth noting that in Griffith's (1921) original theory of cracks only surface energy is considered, which is of
course inadmissible in the sense of inequality (A.7), however, it is unambiguous when applied to the systems for
which its basic premises are met. Altan and Aifantis (l992b) in analysing mode-III cracks have shown that in the
tip region strain gradient terms are important. However, they have only considered the volumetric strain-gradient
energy term ignoring the surface energy term, which is important within the present framework ofelasticity theory
with microstructure.

In the uniaxial case the following equilibrium conditions holds true for the total stress u

du
-=0
dx

where

u = t+1X

and IX is the workless relative stress, which is equilibrated by the double stress

(A.8)

(A.9)

(A. 10)

The appropriate stress-strain relations of gradient-elasticity are finally derived from eqns (A.5), (A.6) and (A.9),
(A.l0) as follows

u = E(e-t2V 2e). (A.ll)

The tension bar problem is thus defined by: (a) the constitutive eqns (A.5) and (A.II) for the double stress and
the total stress, respectively; (b) the equilibrium condition (A.8) for the total stress, and (c) appropriate boundary
conditions, which may be selected as follows

for x = 0: u = 0 and du/dx = 0

for x = L: u = l! and Jl = 0 (A.12)

with u being the displacement of the bar.
The solution of the above problem gives an inhomogeneous strain distribution under constant stress. It reads
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APPENDIX B

(A.13)

with

Consider the governing Fredholm integral equation of the second kind (65)

I i".-p(t) + - K(t, 't").-p('t") d't" = get)
t 2

0

(B.1)

(B.2)

and g(t) defined through eqn (67).
By introducing the variables

t 't"
t*=-, 't"*=-, ~*=~t,

IX IX

eqn (A.4) becomes

.-p(lXt*)+t- 2I K(t*,'t"*).-p(IX't"*)lXd't"* = g(lXt*)

with

By setting

.-p(lXt*) = cp(t*), K(t*,'t"*) = 1XK*(t*, 't"*), g(lXt*) = g(t*)

then eqn (B.4) takes the form

cp(t*) + (~JI K*(t*, 't"*)CP('t"*) d't"* = g(t*).

Then, by renaming the variables and for simplicity of notation

t* -+ t, r* -+ 't', K* -+ K,

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

we can rewrite eqn (B.7) in the following form

.-p(t) +,iI K(t, 't").-p('t") d't" = f(t)

with

By making the approximation

(B.9)

(B.IO)
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the kernel becomes

with

By recourse to the following formulae concerning the convergent integral (Watson, 1958)
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(B.lI)

(B.12)

(RI3)

-r ~ t

-r ~ t

(B.l4)

and the divergent integral for -r = t

the kernel takes the final form

-r < I

-r > I

(RI5)

-r<1

-r> t

(B.16)

For 11 # 0 and -r --+ t the kernel K 2 becomes unbounded. Indeed, an examination of eqn (B.l6) reveals that

-r --+ 1-0

-r --+ 1+0,

(RI?)

i.e., the kernel K exhibits a logarithmic singularity at -r = I. However, in the theory of Fredholm integral equations
we can avoid the restrictive hypothesis of continuity (and consequently boundedness) of the kernel K(I, -r) by
placing it in the Lebesgue class L2 in the square [0, I] x [0, I] (Tricomi, 1957). Since from eqn (B.l4) the kernel K,
is bounded everywhere in [0, I] x [0, I] it only remains to show that the kernel K2 is an L2 function. The necessary
and sufficient condition for the kernel K2(1, -r) to belong in L 2 is

(RI8)

Considering first the limiting case -r --+ 1- 0, we get from the first of relationships (RI7)

Substituting in eqn (B.l8) we get

(R20)

By virtue of the transformation of variables
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inequality (B.20) becomes
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~=~
1

2 f.' f.' I f.' f.'+- Idl 10g(l-e)1og(I+~)d~+- Idl [log(I+~Wde.
n2 0 0 n2 0 0

By making the substitutions

x = I-~, x' = I +~

in the first two integrands and in the third integrand, respectively, and using also Schwarz's inequality

rb [ rb rb J112Ja f(x)g(x) dx,;;; Ja P (x) dx Ja g2 (x) dx

for the second integral of (B.21) we eventually find after the necessary manipulations

IIK2 11 2 <0.173 '-'1-0.

Following a precisely similar piece of work one can also find from eqns (B.17) and (B.21)

which proves that the kernel K2 is an L2 function. Then, from eqns (B.16), (B.22) and (B.23) it is found

(B.21)

(B.22)

(B.23)

Finally, it can be shown that the free term of the Fredholm integral equation

,< 1

,> I

(B.24)

I 0"0 t' 0"0
g(l) = 2. (j t 2gl (I) - (jg2(t) (B.25)

with

belongs to L1-c1ass in [0, I]. First,

from which it follows

By virtue of the following transformation of variables

it turns out

(B.26)



Mode-III crack problem

i.e. the function 9, belongs to L 2 [O, I] and consequently to LI[O, I].
By virtue of the shifting property of the delta function it can be found

or in other words, 92 belongs to LI[O, I], but not to L2 since

119211 2 = fa' t-Jb(l-t)b(l-t)dt = b(l-t).

4557

The solution of the Fredholm integral equation for l'/ = 0 following Liouville-Neumann method of successive
substitutions provided that A< liN = 2 is given by (Whittaker and Watson, 1948)

where

The above recursion formula leads to the following expressions

(B.27)

(B.28)

(B.29)

which are adequate for the convergency of the solution for A< liN == 2. In Fig. B.l it is demonstrated that the
solution of the resolvent and Neumann's method for A= 1.5625 coincide.

0.3-r------------------------,
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0.2 0.4
X/a

0.6 0.8

Fig. B.l. Convergency of solution by increasing the number of terms j in the truncated series of
Newmann's method and comparison with resolvent method for A= 1.5625.
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APPENDIX C

Consider the improper integral expression (71)

U, = f rp*(t)Jt2 _x2 dt = ~i~(f-' rp*(t)Jt2 _x2 dt+[. rp*(t)Jt2 _x2 dt)= I, +/2 (C.I)

where according to eqns (64) and (72) rp*(t) exhibits a logarithmic singularity at t = a. By virtue of eqn (64)

(Jt'li
a

II[ (t
2

) ] III21=~~a a_.-;t log I-~ +0(1) Jt
2
-x

2
dt

(J t' a Iia

I ( t
2

) I< ---"- - - -log I - - J t2
- x2 dt

G {2 'It a-. t a 2

and

(J t' alia I ( t
2 )J (t

2

X

2

) I (J t' alia ( t
2

) I1/21 < ---"- - - -log I - - a2 - - - dt < ---"- - - log I - - dt
G {2 'It a-. t a2 a2 a2 G {2 'It a-. 1X2

(JOt'
1X2 If' 2 I (Jot'al1 l 111=---a log(l-¢ )d~ =--- -1.3+log-.

G {2 'It 1-./a G (2 'It a

Next, consider the expression

U, = f-· rp*(t)Jt2 _x2 dt+e(l1) 0 ~ x < IX

e(l1) = (Jo £ 1X111_1.3+10g~I""o as 11 .... 0.
G (2 'It IX

Writing

U, = r-' u(t) dvCt)+e(l1)

with

I
uct) = 3t rp*(t), vet) = (t2

_X
2

)3 /2

we can carry out the integration by parts represented by

Uz = [u(t)v(t)]~-"- r-' vet) duet) +e(I1)·

The above expression by virtue of (e.6) takes the form

where

I[ (x) = f-· vet) duet).

By using relations (C.6) the integral representation (e.9) becomes

(e.2)

(C.3)

(e.4)

(e.5)

(e.6)

(e.?)

(e.8)

(e.9)

(C.lO)

It is evident that the derivative appearing in the integrand is bounded for the range x ~ t ~ a-l1. Writing M for
an upper bound on the absolute value we obtain
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III (x)1 < M f (t2
_X

2
)'/2 dt,

but since

we have further

By setting

r=lJ(-x

it is evident from (C.8) and (Cl3)

u,(r)I,_o = 2f rx l
/
2 cp*(rx-rr)r3

/
2 +0(r5

/
2

) +8(rr)·
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(Cll)

(CI2)

(Cl3)

(CI4)

(C.l5)


